Tetrahedron Letters, Vol.26, No.1, pp 37 - 38, 1985 Printed in Great Britain

UNUSUAL BRIDGEHEAD HYDROXYLATIONS VIA SELENOXIDES: EVIDENCE FOR BRIDGEHEAD CARBOCATIONS

Robert M. Williams* and Jen-Sen Dung Department of Chemistry, Colorado State University Fort Collins, Colorado 80523 USA

<u>Summary</u>: Treatment of C-6-phenylselenyl bicyclo[4.2.2]piperazinediones with H_2O_2 affords the C-6-peroxy and C-6-hydroxy bicyclic piperazinediones and is rationalized on the basis of intermediate bridgehead carbocations.

During the course of our studies¹ on the chemistry of the 8,10-diaza-2-oxabicyclo[4.2.2]decane-7,9-dione nucleus present in the novel antibiotic bicyclomycin, we discovered an unusual bridgehead hydroxylation reaction via selenoxides.

Quenching the bridgehead carbanion of bicyclic piperazinediones 1 with phenylselenenyl chloride according to our previously described $protocol^{1a}$ afforded the bridgehead selenides 2.² Treatment of 2 with 6 equiv of 30% H₂O₂ in THF for 15 h at 25°C followed by evaporation and PTLC on silica gel afforded the bridgehead $alcohol^3$ 3 (36%) and the novel peroxide 4 (41%).⁴ Reduction of the peroxide with NaBH₄ in CH₃OH afforded the corresponding alcohol 3 (98%). We also found that peroxide 4 is readily reduced⁵ to 3 in the presence of LDA in THF at -78°C (quant). Authentic samples of 3 were prepared¹ by quenching the regioselectively generated bridgehead carbanions of 1 with O₂ in THF/HMPA at -78°C.

It would seem plausible that the geometric constraints imposed by the bicyclic ring system preclude the normal <u>syn</u>-elimination of the selenoxides 5 with the β -hydrogens of the C-5 methylene; in this case a highly strained bridgehead olefin would be produced and is considered an unlikely intermediate. The bridgehead disposition of the selenoxide also precludes bimolecular (SN₂) displacement of the selenate by H₂O or H₂O₂ to afford 3 and 4, respectively. A third possibility involves homolysis of the C-Se bond to form a bridgehead radical which could combine with O₂ to form the peroxide 4. The radical could also recombine with 'OSeØ to form a hydrolytically labile selenate leading to 3. However, performing the reaction in O₂-degassed H₂O₂ afforded exactly the same results as that above. This result and the abscence of reduced 1 would tend to cast doubt on the intermediacy of free radicals. Finally, expulsion of the selenate by participation of the N-10 amide nitrogen to form a bridgehead iminium/carbocationic species (6/7/8) could be trapped by H₂O or H₂O₂ to give the observed products.⁶ Although

efficient overlap of the N-10 amide lone pair with C-6 is not possible, an inductively stabilized and partially pyramidal carbocation at C-6 cannot be ruled out. The additional participation of the oxonium canonical structure 7 requiring a 5-5-5 tricyclic transition state is geometrically accessible and possibly significant. If 6/7/8 were an intermediate, we reasoned that the corresponding bicyclo[3.2.2] analog 9^{lb} would be considerably less capable of passing through an analogous carbocation at C-5. In the same fashion,¹ the C-5-phenylselenenyl bicyclo[3.2.2] piperazinedione (10) was prepared from 9 (43%) and treated with 30% H₂O₂. The resulting selenoxide (quant) was found to be completely stable at reflux temperature for several days. Absolutely no evidence for the formation of bridgehead alcohol or peroxide could be

obtained from this substrate. From these observations, we conclude that the bicyclo[4.2.2] system is geometrically and electronically capable of supporting a positive charge at C-6, whereas the smaller, more highly strained bicyclo[3.2.2] system is not. These considerations must also be compared to the strikingly <u>similar</u> bridgehead carbanion chemistry which both systems display.¹

References and Footnotes

- a) Williams, R. M.; Dung, J-S.; Josey, J.; Armstrong, R. W.; Meyers, H. J. Am. Chem. Soc. (1983) 105, 3214; b) Williams, R. M.; Anderson, O. P.; Armstrong, R. W.; Josey, J.; Meyers, H.; Eriksson, C.; <u>ibid</u> (1983) 104, 6092; c) total synthesis: Williams, R. M.; Armstrong, R. W.; Dung, J-S. <u>ibid</u> (1984) 106, 5748; d) 188th National ACS Meeting, Division of Organic Chemistry, Philadelphia, PA, August 1984, Abstract 92.
- 2. Satisfactory spectroscopic and analytical data were obtained for this compound.
- Spectroscopic and analytical data for <u>1</u> (R=CH₃, CH₂Ph) and <u>3</u> (R=CH₃) are reported in reference lb; data for <u>3</u> (R=CH₂Ph) is reported elsewhere, Williams, R. M.; Armstrong, R. W.; Dung, J-S. submitted for publication.
- 4. Data for <u>4</u> (R=CH₃): ¹H NMR (270 MHz) (CDCl₃) 6 TMS: 1.55-1.86(1H, m), 1.87-1.92(1H, m), 1.98-2.02(2H, m), 3.06(3H, s), 3.12(3H, s), 3.48(1H, m), 3.90(1H, m), 5.14(1H, s), 9.51(1H, s, D₂O exch); IR(NaCl, neat): 3240, 1675, 1450, 1400, 1310, 1250, 1065 cm⁻¹; mp 200°C (sublimes). Anal. (C₉H₁₄N₂O₅) C, H, N.
- 5. It is of interest that <u>4</u> is <u>not</u> observed in the bridgehead carbanion quench of <u>1</u> with O₂; this putative, reactive peroxide is reduce <u>in situ</u> to <u>3</u> with either HMPA or diisopropylamine.
- A somewhat related piperazinedione (cyclo-pro-pro) peroxide reaction via sulfides has been reported: Ohler, E.; Tataruch, F.; Schmidt, V. <u>Chem. Ber.</u> (1973) 106, 165.
- 7. This work was financially supported by the National Institutes of Health Grant ROLAIGM18957.

(Received in USA 27 July 1984)